Manipulating Data with dplyr

Overview

dplyr is an R package for working with structured data both in and outside of R. dplyr makes data manipulation for R users easy, consistent, and performant. With dplyr as an interface to manipulating Spark DataFrames, you can:

  • Select, filter, and aggregate data
  • Use window functions (e.g. for sampling)
  • Perform joins on DataFrames
  • Collect data from Spark into R

Statements in dplyr can be chained together using pipes defined by the magrittr R package. dplyr also supports non-standard evalution of its arguments. For more information on dplyr, see the introduction, a guide for connecting to databases, and a variety of vignettes.

Flights Data

This guide will demonstrate some of the basic data manipulation verbs of dplyr by using data from the nycflights13 R package. This package contains data for all 336,776 flights departing New York City in 2013. It also includes useful metadata on airlines, airports, weather, and planes. The data comes from the US Bureau of Transportation Statistics, and is documented in ?nycflights13

Connect to the cluster and copy the flights data using the copy_to() function. Caveat: The flight data in nycflights13 is convenient for dplyr demonstrations because it is small, but in practice large data should rarely be copied directly from R objects.

library(sparklyr)
library(dplyr)
library(ggplot2)

sc <- spark_connect(master="local")

flights_tbl <- copy_to(sc, nycflights13::flights, "flights")

airlines_tbl <- copy_to(sc, nycflights13::airlines, "airlines")

dplyr Verbs

Verbs are dplyr commands for manipulating data. When connected to a Spark DataFrame, dplyr translates the commands into Spark SQL statements. Remote data sources use exactly the same five verbs as local data sources. Here are the five verbs with their corresponding SQL commands:

select(flights_tbl, year:day, arr_delay, dep_delay)
# Source: spark<?> [?? x 5]
    year month   day arr_delay dep_delay
   <int> <int> <int>     <dbl>     <dbl>
 1  2013     1     1        11         2
 2  2013     1     1        20         4
 3  2013     1     1        33         2
 4  2013     1     1       -18        -1
 5  2013     1     1       -25        -6
 6  2013     1     1        12        -4
 7  2013     1     1        19        -5
 8  2013     1     1       -14        -3
 9  2013     1     1        -8        -3
10  2013     1     1         8        -2
# … with more rows
filter(flights_tbl, dep_delay > 1000)
# Source: spark<?> [?? x 19]
   year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
  <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
1  2013     1     9      641            900      1301     1242           1530
2  2013     1    10     1121           1635      1126     1239           1810
3  2013     6    15     1432           1935      1137     1607           2120
4  2013     7    22      845           1600      1005     1044           1815
5  2013     9    20     1139           1845      1014     1457           2210
# … with 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#   hour <dbl>, minute <dbl>, time_hour <dttm>
arrange(flights_tbl, desc(dep_delay))
# Source:     spark<?> [?? x 19]
# Ordered by: desc(dep_delay)
    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
   <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
 1  2013     1     9      641            900      1301     1242           1530
 2  2013     6    15     1432           1935      1137     1607           2120
 3  2013     1    10     1121           1635      1126     1239           1810
 4  2013     9    20     1139           1845      1014     1457           2210
 5  2013     7    22      845           1600      1005     1044           1815
 6  2013     4    10     1100           1900       960     1342           2211
 7  2013     3    17     2321            810       911      135           1020
 8  2013     6    27      959           1900       899     1236           2226
 9  2013     7    22     2257            759       898      121           1026
10  2013    12     5      756           1700       896     1058           2020
# … with more rows, and 11 more variables: arr_delay <dbl>, carrier <chr>,
#   flight <int>, tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
#   distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
summarise(
  flights_tbl, 
  mean_dep_delay = mean(dep_delay, na.rm = TRUE)
  )
# Source: spark<?> [?? x 1]
  mean_dep_delay
           <dbl>
1           12.6
mutate(flights_tbl, speed = distance / air_time * 60)
# Source: spark<?> [?? x 20]
    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
   <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
 1  2013     1     1      517            515         2      830            819
 2  2013     1     1      533            529         4      850            830
 3  2013     1     1      542            540         2      923            850
 4  2013     1     1      544            545        -1     1004           1022
 5  2013     1     1      554            600        -6      812            837
 6  2013     1     1      554            558        -4      740            728
 7  2013     1     1      555            600        -5      913            854
 8  2013     1     1      557            600        -3      709            723
 9  2013     1     1      557            600        -3      838            846
10  2013     1     1      558            600        -2      753            745
# … with more rows, and 12 more variables: arr_delay <dbl>, carrier <chr>,
#   flight <int>, tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
#   distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>, speed <dbl>

Laziness

When working with databases, dplyr tries to be as lazy as possible:

  • It never pulls data into R unless you explicitly ask for it.

  • It delays doing any work until the last possible moment: it collects together everything you want to do and then sends it to the database in one step.

For example, take the following code:

c1 <- filter(
  flights_tbl, 
  day == 17, month == 5, carrier %in% c('UA', 'WN', 'AA', 'DL')
  )

c2 <- select(c1, year, month, day, carrier, dep_delay, air_time, distance)

c3 <- mutate(c2, air_time_hours = air_time / 60)

c4 <- arrange(c3, year, month, day, carrier)

This sequence of operations never actually touches the database. It’s not until you ask for the data (e.g. by printing c4) that dplyr requests the results from the database.

c4
# Source:     spark<?> [?? x 8]
# Ordered by: year, month, day, carrier
    year month   day carrier dep_delay air_time distance air_time_hours
   <int> <int> <int> <chr>       <dbl>    <dbl>    <dbl>          <dbl>
 1  2013     5    17 AA             -7      142     1089           2.37
 2  2013     5    17 AA             -9      186     1389           3.1 
 3  2013     5    17 AA             -6      143     1096           2.38
 4  2013     5    17 AA             -7      119      733           1.98
 5  2013     5    17 AA             -4      114      733           1.9 
 6  2013     5    17 AA             -2      146     1085           2.43
 7  2013     5    17 AA             -2      185     1372           3.08
 8  2013     5    17 AA             -3      193     1598           3.22
 9  2013     5    17 AA             -7      137      944           2.28
10  2013     5    17 AA             -1      195     1389           3.25
# … with more rows

Piping

You can use magrittr pipes to write cleaner syntax. Using the same example from above, you can write a much cleaner version like this:

c4 <- flights_tbl %>%
  filter(month == 5, day == 17, carrier %in% c('UA', 'WN', 'AA', 'DL')) %>%
  select(carrier, dep_delay, air_time, distance) %>%
  mutate(air_time_hours = air_time / 60) %>% 
  arrange(carrier) 

Grouping

The group_by() function corresponds to the GROUP BY statement in SQL.

flights_tbl %>% 
  group_by(carrier) %>%
  summarize(
    count = n(), 
    mean_dep_delay = mean(dep_delay, na.rm = FALSE)
    )
Warning: Missing values are always removed in SQL.
Use `mean(x, na.rm = TRUE)` to silence this warning
This warning is displayed only once per session.
# Source: spark<?> [?? x 3]
   carrier count mean_dep_delay
   <chr>   <dbl>          <dbl>
 1 WN      12275          17.7 
 2 VX       5162          12.9 
 3 YV        601          19.0 
 4 DL      48110           9.26
 5 OO         32          12.6 
 6 B6      54635          13.0 
 7 F9        685          20.2 
 8 EV      54173          20.0 
 9 US      20536           3.78
10 UA      58665          12.1 
# … with more rows

Collecting to R

You can copy data from Spark into R’s memory by using collect().

carrierhours <- collect(c4)

collect() executes the Spark query and returns the results to R for further analysis and visualization.

# Test the significance of pairwise differences and plot the results

with(carrierhours, pairwise.t.test(air_time, carrier))

    Pairwise comparisons using t tests with pooled SD 

data:  air_time and carrier 

   AA      DL      UA     
DL 0.25057 -       -      
UA 0.07957 0.00044 -      
WN 0.07957 0.23488 0.00041

P value adjustment method: holm 
carrierhours %>% 
  ggplot() + 
  geom_boxplot(aes(carrier, air_time_hours))

SQL Translation

It’s relatively straightforward to translate R code to SQL (or indeed to any programming language) when doing simple mathematical operations of the form you normally use when filtering, mutating and summarizing. dplyr knows how to convert the following R functions to Spark SQL:

# Basic math operators
+, -, *, /, %%, ^
  
# Math functions
abs, acos, asin, asinh, atan, atan2, ceiling, cos, cosh, exp, floor, log, 
log10, round, sign, sin, sinh, sqrt, tan, tanh

# Logical comparisons
<, <=, !=, >=, >, ==, %in%

# Boolean operations
&, &&, |, ||, !

# Character functions
paste, tolower, toupper, nchar

# Casting
as.double, as.integer, as.logical, as.character, as.date

# Basic aggregations
mean, sum, min, max, sd, var, cor, cov, n

dplyr supports Spark SQL window functions. Window functions are used in conjunction with mutate and filter to solve a wide range of problems. You can compare the dplyr syntax to the query it has generated by using dplyr::show_query().

# Rank each flight within a daily
ranked <- flights_tbl %>%
  group_by(year, month, day) %>%
  select(dep_delay) %>% 
  mutate(rank = rank(desc(dep_delay)))

dplyr::show_query(ranked)
<SQL>
SELECT `year`, `month`, `day`, `dep_delay`, RANK() OVER (PARTITION BY `year`, `month`, `day` ORDER BY `dep_delay` DESC) AS `rank`
FROM `flights`
ranked 
# Source: spark<?> [?? x 5]
# Groups: year, month, day
    year month   day dep_delay  rank
   <int> <int> <int>     <dbl> <int>
 1  2013     1     1       853     1
 2  2013     1     1       379     2
 3  2013     1     1       290     3
 4  2013     1     1       285     4
 5  2013     1     1       260     5
 6  2013     1     1       255     6
 7  2013     1     1       216     7
 8  2013     1     1       192     8
 9  2013     1     1       157     9
10  2013     1     1       155    10
# … with more rows

Peforming Joins

It’s rare that a data analysis involves only a single table of data. In practice, you’ll normally have many tables that contribute to an analysis, and you need flexible tools to combine them. In dplyr, there are three families of verbs that work with two tables at a time:

  • Mutating joins, which add new variables to one table from matching rows in another.

  • Filtering joins, which filter observations from one table based on whether or not they match an observation in the other table.

  • Set operations, which combine the observations in the data sets as if they were set elements.

All two-table verbs work similarly. The first two arguments are x and y, and provide the tables to combine. The output is always a new table with the same type as x.

flights_tbl %>% 
  left_join(airlines_tbl, by = "carrier") %>% 
  select(name, flight, dep_time)
# Source: spark<?> [?? x 3]
   name                     flight dep_time
   <chr>                     <int>    <int>
 1 Delta Air Lines Inc.        461      554
 2 JetBlue Airways             725      544
 3 JetBlue Airways             507      555
 4 JetBlue Airways              79      557
 5 JetBlue Airways              49      558
 6 ExpressJet Airlines Inc.   5708      557
 7 United Air Lines Inc.      1545      517
 8 United Air Lines Inc.      1714      533
 9 United Air Lines Inc.      1696      554
10 American Airlines Inc.     1141      542
# … with more rows

Sampling

You can use sample_n() and sample_frac() to take a random sample of rows: use sample_n() for a fixed number and sample_frac() for a fixed fraction.

sample_n(flights_tbl, 10) %>% 
  select(1:4)
# Source: spark<?> [?? x 4]
    year month   day dep_time
   <int> <int> <int>    <int>
 1  2013    11    24     1039
 2  2013     4    18     2026
 3  2013     9    10     1643
 4  2013     2     1     1625
 5  2013     4    19      536
 6  2013     3     8     1905
 7  2013     9     3     1349
 8  2013     3     5     1603
 9  2013     1    14     1753
10  2013     9    16      904
sample_frac(flights_tbl, 0.01) %>% 
  count()
# Source: spark<?> [?? x 1]
      n
  <dbl>
1  3368

Hive Functions

Many of Hive’s built-in functions (UDF) and built-in aggregate functions (UDAF) can be called inside dplyr’s mutate and summarize. The Languange Reference UDF page provides the list of available functions.

The following example uses the datediff and current_date Hive UDFs to figure the difference between the flight_date and the current system date:

flights_tbl %>% 
  mutate(
    flight_date = paste(year,month,day,sep="-"),
    days_since = datediff(current_date(), flight_date)
    ) %>%
  group_by(flight_date,days_since) %>%
  count() %>%
  arrange(-days_since)
# Source:     spark<?> [?? x 3]
# Groups:     flight_date
# Ordered by: -days_since
   flight_date days_since     n
   <chr>            <int> <dbl>
 1 2013-1-1          3311   842
 2 2013-1-2          3310   943
 3 2013-1-3          3309   914
 4 2013-1-4          3308   915
 5 2013-1-5          3307   720
 6 2013-1-6          3306   832
 7 2013-1-7          3305   933
 8 2013-1-8          3304   899
 9 2013-1-9          3303   902
10 2013-1-10         3302   932
# … with more rows