stream_write_kafka
Write Kafka Stream
Description
Writes a Spark dataframe stream into an kafka stream.
Usage
stream_write_kafka(
x,
mode = c("append", "complete", "update"),
trigger = stream_trigger_interval(),
checkpoint = file.path("checkpoints", random_string("")),
options = list(),
partition_by = NULL,
...
)Arguments
| Argument | Description |
|---|---|
| x | A Spark DataFrame or dplyr operation |
| mode | Specifies how data is written to a streaming sink. Valid values are |
"append", "complete" or "update". trigger | The trigger for the stream query, defaults to micro-batches runnnig every 5 seconds. See stream_trigger_interval and stream_trigger_continuous. checkpoint | The location where the system will write all the checkpoint information to guarantee end-to-end fault-tolerance. options | A list of strings with additional options. partition_by | Partitions the output by the given list of columns. … | Optional arguments; currently unused.
Details
Please note that Kafka requires installing the appropriate package by setting the packages parameter to "kafka" in spark_connect()
Examples
library(sparklyr)
sc <- spark_connect(master = "local", version = "2.3", packages = "kafka")
read_options <- list(kafka.bootstrap.servers = "localhost:9092", subscribe = "topic1")
write_options <- list(kafka.bootstrap.servers = "localhost:9092", topic = "topic2")
stream <- stream_read_kafka(sc, options = read_options) %>%
stream_write_kafka(options = write_options)
stream_stop(stream)See Also
Other Spark stream serialization: stream_read_csv(), stream_read_delta(), stream_read_json(), stream_read_kafka(), stream_read_orc(), stream_read_parquet(), stream_read_socket(), stream_read_text(), stream_write_console(), stream_write_csv(), stream_write_delta(), stream_write_json(), stream_write_memory(), stream_write_orc(), stream_write_parquet(), stream_write_text()