spark_write_source
Writes a Spark DataFrame into a generic source
Description
Writes a Spark DataFrame into a generic source.
Usage
spark_write_source(
x,
source,
mode = NULL,
options = list(),
partition_by = NULL,
...
)
Arguments
Argument | Description |
---|---|
x | A Spark DataFrame or dplyr operation |
source | A data source capable of reading data. |
mode | A character element. Specifies the behavior when data or |
table already exists. Supported values include: ‘error’, ‘append’, ‘overwrite’ and ignore. Notice that ‘overwrite’ will also change the column structure.
For more details see also https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes for your version of Spark. options | A list of strings with additional options. partition_by | A character
vector. Partitions the output by the given columns on the file system. … | Optional arguments; currently unused.
See Also
Other Spark serialization routines: collect_from_rds()
, spark_load_table()
, spark_read_avro()
, spark_read_binary()
, spark_read_csv()
, spark_read_delta()
, spark_read_image()
, spark_read_jdbc()
, spark_read_json()
, spark_read_libsvm()
, spark_read_orc()
, spark_read_parquet()
, spark_read_source()
, spark_read_table()
, spark_read_text()
, spark_read()
, spark_save_table()
, spark_write_avro()
, spark_write_csv()
, spark_write_delta()
, spark_write_jdbc()
, spark_write_json()
, spark_write_orc()
, spark_write_parquet()
, spark_write_table()
, spark_write_text()