spark_read_source
Read from a generic source into a Spark DataFrame.
Description
Read from a generic source into a Spark DataFrame.
Usage
spark_read_source(
sc,
name = NULL,
path = name,
source,
options = list(),
repartition = 0,
memory = TRUE,
overwrite = TRUE,
columns = NULL,
...
)
Arguments
Argument | Description |
---|---|
sc | A spark_connection . |
name | The name to assign to the newly generated table. |
path | The path to the file. Needs to be accessible from the cluster. |
Supports the “hdfs://”, “s3a://” and “file://” protocols. source | A data source capable of reading data. options | A list of strings with additional options. See https://spark.apache.org/docs/latest/sql-programming-guide.html#configuration. repartition | The number of partitions used to distribute the generated table. Use 0 (the default) to avoid partitioning. memory | Boolean; should the data be loaded eagerly into memory? (That is, should the table be cached?) overwrite | Boolean; overwrite the table with the given name if it already exists? columns | A vector of column names or a named vector of column types. If specified, the elements can be "binary"
for BinaryType
, "boolean"
for BooleanType
, "byte"
for ByteType
, "integer"
for IntegerType
, "integer64"
for LongType
, "double"
for DoubleType
, "character"
for StringType
, "timestamp"
for TimestampType
and "date"
for DateType
. … | Optional arguments; currently unused.
See Also
Other Spark serialization routines: collect_from_rds()
, spark_load_table()
, spark_read_avro()
, spark_read_binary()
, spark_read_csv()
, spark_read_delta()
, spark_read_image()
, spark_read_jdbc()
, spark_read_json()
, spark_read_libsvm()
, spark_read_orc()
, spark_read_parquet()
, spark_read_table()
, spark_read_text()
, spark_read()
, spark_save_table()
, spark_write_avro()
, spark_write_csv()
, spark_write_delta()
, spark_write_jdbc()
, spark_write_json()
, spark_write_orc()
, spark_write_parquet()
, spark_write_source()
, spark_write_table()
, spark_write_text()