sdf_rlnorm
Generate random samples from a log normal distribution
Description
Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from a log normal distribution.
Usage
sdf_rlnorm(
sc,
n,
meanlog = 0,
sdlog = 1,
num_partitions = NULL,
seed = NULL,
output_col = "x"
)
Arguments
Argument | Description |
---|---|
sc | A Spark connection. |
n | Sample Size (default: 1000). |
meanlog | The mean of the normally distributed natural logarithm of this distribution. |
sdlog | The Standard deviation of the normally distributed natural logarithm of this distribution. |
num_partitions | Number of partitions in the resulting Spark dataframe |
(default: default parallelism of the Spark cluster). seed | Random seed (default: a random long integer). output_col | Name of the output column containing sample values (default: “x”).
See Also
Other Spark statistical routines: sdf_rbeta()
, sdf_rbinom()
, sdf_rcauchy()
, sdf_rchisq()
, sdf_rexp()
, sdf_rgamma()
, sdf_rgeom()
, sdf_rhyper()
, sdf_rnorm()
, sdf_rpois()
, sdf_rt()
, sdf_runif()
, sdf_rweibull()