ml_isotonic_regression
Spark ML – Isotonic Regression
Description
Currently implemented using parallelized pool adjacent violators algorithm. Only univariate (single feature) algorithm supported.
Usage
ml_isotonic_regression(
x,
formula = NULL,
feature_index = 0,
isotonic = TRUE,
weight_col = NULL,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
uid = random_string("isotonic_regression_"),
...
)
Arguments
Argument | Description |
---|---|
x | A spark_connection , ml_pipeline , or a tbl_spark . |
formula | Used when x is a tbl_spark . R formula as a character string or a formula. This is used to transform the input dataframe before fitting, see ft_r_formula for details. |
feature_index | Index of the feature if features_col is a vector column (default: 0), no effect otherwise. |
isotonic | Whether the output sequence should be isotonic/increasing (true) or antitonic/decreasing (false). Default: true |
weight_col | The name of the column to use as weights for the model fit. |
features_col | Features column name, as a length-one character vector. The column should be single vector column of numeric values. Usually this column is output by ft_r_formula . |
label_col | Label column name. The column should be a numeric column. Usually this column is output by ft_r_formula . |
prediction_col | Prediction column name. |
uid | A character string used to uniquely identify the ML estimator. |
… | Optional arguments; see Details. |
Details
When x
is a tbl_spark
and formula
(alternatively, response
and features
) is specified, the function returns a ml_model
object wrapping a ml_pipeline_model
which contains data pre-processing transformers, the ML predictor, and, for classification models, a post-processing transformer that converts predictions into class labels. For classification, an optional argument predicted_label_col
(defaults to "predicted_label"
) can be used to specify the name of the predicted label column. In addition to the fitted ml_pipeline_model
, ml_model
objects also contain a ml_pipeline
object where the ML predictor stage is an estimator ready to be fit against data. This is utilized by ml_save
with type = "pipeline"
to faciliate model refresh workflows.
Value
The object returned depends on the class of x
.
spark_connection
: Whenx
is aspark_connection
, the function returns an instance of aml_estimator
object. The object contains a pointer to a SparkPredictor
object and can be used to composePipeline
objects.ml_pipeline
: Whenx
is aml_pipeline
, the function returns aml_pipeline
with the predictor appended to the pipeline.tbl_spark
: Whenx
is atbl_spark
, a predictor is constructed then immediately fit with the inputtbl_spark
, returning a prediction model.tbl_spark
, withformula
: specified Whenformula
is specified, the inputtbl_spark
is first transformed using aRFormula
transformer before being fit by the predictor. The object returned in this case is aml_model
which is a wrapper of aml_pipeline_model
.
Examples
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
partitions <- iris_tbl %>%
sdf_random_split(training = 0.7, test = 0.3, seed = 1111)
iris_training <- partitions$training
iris_test <- partitions$test
iso_res <- iris_tbl %>%
ml_isotonic_regression(Petal_Length ~ Petal_Width)
pred <- ml_predict(iso_res, iris_test)
pred
See Also
See https://spark.apache.org/docs/latest/ml-classification-regression.html for more information on the set of supervised learning algorithms.
Other ml algorithms: ml_aft_survival_regression()
, ml_decision_tree_classifier()
, ml_gbt_classifier()
, ml_generalized_linear_regression()
, ml_linear_regression()
, ml_linear_svc()
, ml_logistic_regression()
, ml_multilayer_perceptron_classifier()
, ml_naive_bayes()
, ml_one_vs_rest()
, ml_random_forest_classifier()