ml_glm_tidiers
Tidying methods for Spark ML linear models
Description
These methods summarize the results of Spark ML models into tidy forms.
Usage
tidyml_model_generalized_linear_regression(x, exponentiate = FALSE, …)
tidyml_model_linear_regression(x, …)
augmentml_model_generalized_linear_regression( x, newdata = NULL, type.residuals = c(“working”, “deviance”, “pearson”, “response”), … )
augmentml_model_linear_regression( x, newdata = NULL, type.residuals = c(“working”, “deviance”, “pearson”, “response”), … )
glanceml_model_generalized_linear_regression(x, …)
glanceml_model_linear_regression(x, …)
Arguments
Argument | Description |
---|---|
x | a Spark ML model. |
exponentiate | For GLM, whether to exponentiate the coefficient estimates (typical for logistic regression.) |
… | extra arguments (not used.) |
newdata | a tbl_spark of new data to use for prediction. |
type.residuals | type of residuals, defaults to "working" . Must be set to |
"working"
when newdata
is supplied.
Details
The residuals attached by augment
are of type “working” by default, which is different from the default of “deviance” for residuals()
or sdf_residuals()
.