ml-transform-methods
Spark ML – Transform, fit, and predict methods (ml_ interface)
Description
Methods for transformation, fit, and prediction. These are mirrors of the corresponding sdf-transform-methods.
Usage
is_ml_transformer(x)
is_ml_estimator(x)
ml_fit(x, dataset, …)
ml_transform(x, dataset, …)
ml_fit_and_transform(x, dataset, …)
ml_predict(x, dataset, …)
ml_predictml_model_classification(x, dataset, probability_prefix = “probability_”, …)
Arguments
Argument | Description |
---|---|
x | A ml_estimator , ml_transformer (or a list thereof), or ml_model object. |
dataset | A tbl_spark . |
… | Optional arguments; currently unused. |
probability_prefix | String used to prepend the class probability output columns. |
Details
These methods are
Value
When x
is an estimator, ml_fit()
returns a transformer whereas ml_fit_and_transform()
returns a transformed dataset. When x
is a transformer, ml_transform()
and ml_predict()
return a transformed dataset. When ml_predict()
is called on a ml_model
object, additional columns (e.g. probabilities in case of classification models) are appended to the transformed output for the user’s convenience.