ml_supervised_pipeline
Constructors for ml_model
Objects
Description
Functions for developers writing extensions for Spark ML. These functions are constructors for ml_model
objects that are returned when using the formula interface.
Usage
ml_supervised_pipeline(predictor, dataset, formula, features_col, label_col)
ml_clustering_pipeline(predictor, dataset, formula, features_col)
ml_construct_model_supervised(
constructor,
predictor,
formula,
dataset,
features_col,
label_col,
...
)
ml_construct_model_clustering(
constructor,
predictor,
formula,
dataset,
features_col,
...
)
new_ml_model_prediction(
pipeline_model,
formula,
dataset,
label_col,
features_col,
...,
class = character()
)
new_ml_model(pipeline_model, formula, dataset, ..., class = character())
new_ml_model_classification(
pipeline_model,
formula,
dataset,
label_col,
features_col,
predicted_label_col,
...,
class = character()
)
new_ml_model_regression(
pipeline_model,
formula,
dataset,
label_col,
features_col,
...,
class = character()
)
new_ml_model_clustering(
pipeline_model,
formula,
dataset,
features_col,
...,
class = character()
)
Arguments
Argument | Description |
---|---|
predictor | The pipeline stage corresponding to the ML algorithm. |
dataset | The training dataset. |
formula | The formula used for data preprocessing |
features_col | Features column name, as a length-one character vector. The column should be single vector column of numeric values. Usually this column is output by ft_r_formula . |
label_col | Label column name. The column should be a numeric column. Usually this column is output by ft_r_formula . |
constructor | The constructor function for the ml_model . |
pipeline_model | The pipeline model object returned by ml_supervised_pipeline() . |
class | Name of the subclass. |