ft_word2vec
Feature Transformation – Word2Vec (Estimator)
Description
Word2Vec transforms a word into a code for further natural language processing or machine learning process.
Usage
ft_word2vec(
x,
input_col = NULL,
output_col = NULL,
vector_size = 100,
min_count = 5,
max_sentence_length = 1000,
num_partitions = 1,
step_size = 0.025,
max_iter = 1,
seed = NULL,
uid = random_string("word2vec_"),
...
)
ml_find_synonyms(model, word, num)
Arguments
Argument | Description |
---|---|
x | A spark_connection , ml_pipeline , or a tbl_spark . |
input_col | The name of the input column. |
output_col | The name of the output column. |
vector_size | The dimension of the code that you want to transform from words. Default: 100 |
min_count | The minimum number of times a token must appear to be included in |
the word2vec model’s vocabulary. Default: 5 max_sentence_length | (Spark 2.0.0+) Sets the maximum length (in words) of each sentence in the input data. Any sentence longer than this threshold will be divided into chunks of up to max_sentence_length
size. Default: 1000 num_partitions | Number of partitions for sentences of words. Default: 1 step_size | Param for Step size to be used for each iteration of optimization (> 0). max_iter | The maximum number of iterations to use. seed | A random seed. Set this value if you need your results to be reproducible across repeated calls. uid | A character string used to uniquely identify the feature transformer. … | Optional arguments; currently unused. model | A fitted Word2Vec
model, returned by ft_word2vec()
. word | A word, as a length-one character vector. num | Number of words closest in similarity to the given word to find.
Details
In the case where x
is a tbl_spark
, the estimator fits against x
to obtain a transformer, which is then immediately used to transform x
, returning a tbl_spark
.
Value
The object returned depends on the class of x
.
spark_connection
: Whenx
is aspark_connection
, the function returns aml_transformer
, aml_estimator
, or one of their subclasses. The object contains a pointer to a SparkTransformer
orEstimator
object and can be used to composePipeline
objects.ml_pipeline
: Whenx
is aml_pipeline
, the function returns aml_pipeline
with the transformer or estimator appended to the pipeline.tbl_spark
: Whenx
is atbl_spark
, a transformer is constructed then immediately applied to the inputtbl_spark
, returning atbl_spark
ml_find_synonyms()
returns a DataFrame of synonyms and cosine similarities
See Also
See https://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark.
Other feature transformers: ft_binarizer()
, ft_bucketizer()
, ft_chisq_selector()
, ft_count_vectorizer()
, ft_dct()
, ft_elementwise_product()
, ft_feature_hasher()
, ft_hashing_tf()
, ft_idf()
, ft_imputer()
, ft_index_to_string()
, ft_interaction()
, ft_lsh
, ft_max_abs_scaler()
, ft_min_max_scaler()
, ft_ngram()
, ft_normalizer()
, ft_one_hot_encoder_estimator()
, ft_one_hot_encoder()
, ft_pca()
, ft_polynomial_expansion()
, ft_quantile_discretizer()
, ft_r_formula()
, ft_regex_tokenizer()
, ft_robust_scaler()
, ft_sql_transformer()
, ft_standard_scaler()
, ft_stop_words_remover()
, ft_string_indexer()
, ft_tokenizer()
, ft_vector_assembler()
, ft_vector_indexer()
, ft_vector_slicer()