ft_pca
Feature Transformation – PCA (Estimator)
Description
PCA trains a model to project vectors to a lower dimensional space of the top k principal components.
Usage
ft_pca(
x,
input_col = NULL,
output_col = NULL,
k = NULL,
uid = random_string("pca_"),
...
)
ml_pca(x, features = tbl_vars(x), k = length(features), pc_prefix = "PC", ...)Arguments
| Argument | Description |
|---|---|
| x | A spark_connection, ml_pipeline, or a tbl_spark. |
| input_col | The name of the input column. |
| output_col | The name of the output column. |
| k | The number of principal components |
| uid | A character string used to uniquely identify the feature transformer. |
| … | Optional arguments; currently unused. |
| features | The columns to use in the principal components |
analysis. Defaults to all columns in x. pc_prefix | Length-one character vector used to prepend names of components.
Details
In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, which is then immediately used to transform x, returning a tbl_spark.
ml_pca() is a wrapper around ft_pca() that returns a ml_model.
Value
The object returned depends on the class of x.
spark_connection: Whenxis aspark_connection, the function returns aml_transformer, aml_estimator, or one of their subclasses. The object contains a pointer to a SparkTransformerorEstimatorobject and can be used to composePipelineobjects.ml_pipeline: Whenxis aml_pipeline, the function returns aml_pipelinewith the transformer or estimator appended to the pipeline.tbl_spark: Whenxis atbl_spark, a transformer is constructed then immediately applied to the inputtbl_spark, returning atbl_spark
Examples
library(dplyr)
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
iris_tbl %>%
select(-Species) %>%
ml_pca(k = 2)See Also
See https://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark.
Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(), ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(), ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(), ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(), ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(), ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()