ft_min_max_scaler

Feature Transformation – MinMaxScaler (Estimator)

Description

Rescale each feature individually to a common range [min, max] linearly using column summary statistics, which is also known as min-max normalization or Rescaling

Usage

ft_min_max_scaler(
  x,
  input_col = NULL,
  output_col = NULL,
  min = 0,
  max = 1,
  uid = random_string("min_max_scaler_"),
  ...
)

Arguments

Argument Description
x A spark_connection, ml_pipeline, or a tbl_spark.
input_col The name of the input column.
output_col The name of the output column.
min Lower bound after transformation, shared by all features Default: 0.0
max Upper bound after transformation, shared by all features Default: 1.0
uid A character string used to uniquely identify the feature transformer.
Optional arguments; currently unused.

Details

In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, which is then immediately used to transform x, returning a tbl_spark.

Value

The object returned depends on the class of x.

  • spark_connection: When x is a spark_connection, the function returns a ml_transformer, a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer or Estimator object and can be used to compose Pipeline objects.

  • ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the transformer or estimator appended to the pipeline.

  • tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied to the input tbl_spark, returning a tbl_spark

Examples


sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

features <- c("Sepal_Length", "Sepal_Width", "Petal_Length", "Petal_Width")

iris_tbl %>%
  ft_vector_assembler(
    input_col = features,
    output_col = "features_temp"
  ) %>%
  ft_min_max_scaler(
    input_col = "features_temp",
    output_col = "features"
  )

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(), ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(), ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(), ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(), ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(), ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()