ft_lsh
Feature Transformation – LSH (Estimator)
Description
Locality Sensitive Hashing functions for Euclidean distance (Bucketed Random Projection) and Jaccard distance (MinHash).
Usage
ft_bucketed_random_projection_lsh(
x,
input_col = NULL,
output_col = NULL,
bucket_length = NULL,
num_hash_tables = 1,
seed = NULL,
uid = random_string("bucketed_random_projection_lsh_"),
...
)
ft_minhash_lsh(
x,
input_col = NULL,
output_col = NULL,
num_hash_tables = 1L,
seed = NULL,
uid = random_string("minhash_lsh_"),
...
)Arguments
| Argument | Description |
|---|---|
| x | A spark_connection, ml_pipeline, or a tbl_spark. |
| input_col | The name of the input column. |
| output_col | The name of the output column. |
| bucket_length | The length of each hash bucket, a larger bucket lowers the |
false negative rate. The number of buckets will be (max L2 norm of input vectors) / bucketLength. num_hash_tables | Number of hash tables used in LSH OR-amplification. LSH OR-amplification can be used to reduce the false negative rate. Higher values for this param lead to a reduced false negative rate, at the expense of added computational complexity. seed | A random seed. Set this value if you need your results to be reproducible across repeated calls. uid | A character string used to uniquely identify the feature transformer. … | Optional arguments; currently unused.
Details
In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, which is then immediately used to transform x, returning a tbl_spark.
Value
The object returned depends on the class of x.
spark_connection: Whenxis aspark_connection, the function returns aml_transformer, aml_estimator, or one of their subclasses. The object contains a pointer to a SparkTransformerorEstimatorobject and can be used to composePipelineobjects.ml_pipeline: Whenxis aml_pipeline, the function returns aml_pipelinewith the transformer or estimator appended to the pipeline.tbl_spark: Whenxis atbl_spark, a transformer is constructed then immediately applied to the inputtbl_spark, returning atbl_spark
See Also
See https://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark.
ft_lsh_utils
Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(), ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(), ft_imputer(), ft_index_to_string(), ft_interaction(), ft_max_abs_scaler(), ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(), ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(), ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(), ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()