ft_lsh
Feature Transformation – LSH (Estimator)
Description
Locality Sensitive Hashing functions for Euclidean distance (Bucketed Random Projection) and Jaccard distance (MinHash).
Usage
ft_bucketed_random_projection_lsh(
x,
input_col = NULL,
output_col = NULL,
bucket_length = NULL,
num_hash_tables = 1,
seed = NULL,
uid = random_string("bucketed_random_projection_lsh_"),
...
)
ft_minhash_lsh(
x,
input_col = NULL,
output_col = NULL,
num_hash_tables = 1L,
seed = NULL,
uid = random_string("minhash_lsh_"),
...
)
Arguments
Argument | Description |
---|---|
x | A spark_connection , ml_pipeline , or a tbl_spark . |
input_col | The name of the input column. |
output_col | The name of the output column. |
bucket_length | The length of each hash bucket, a larger bucket lowers the |
false negative rate. The number of buckets will be (max L2 norm of input vectors) / bucketLength. num_hash_tables | Number of hash tables used in LSH OR-amplification. LSH OR-amplification can be used to reduce the false negative rate. Higher values for this param lead to a reduced false negative rate, at the expense of added computational complexity. seed | A random seed. Set this value if you need your results to be reproducible across repeated calls. uid | A character string used to uniquely identify the feature transformer. … | Optional arguments; currently unused.
Details
In the case where x
is a tbl_spark
, the estimator fits against x
to obtain a transformer, which is then immediately used to transform x
, returning a tbl_spark
.
Value
The object returned depends on the class of x
.
spark_connection
: Whenx
is aspark_connection
, the function returns aml_transformer
, aml_estimator
, or one of their subclasses. The object contains a pointer to a SparkTransformer
orEstimator
object and can be used to composePipeline
objects.ml_pipeline
: Whenx
is aml_pipeline
, the function returns aml_pipeline
with the transformer or estimator appended to the pipeline.tbl_spark
: Whenx
is atbl_spark
, a transformer is constructed then immediately applied to the inputtbl_spark
, returning atbl_spark
See Also
See https://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark.
ft_lsh_utils
Other feature transformers: ft_binarizer()
, ft_bucketizer()
, ft_chisq_selector()
, ft_count_vectorizer()
, ft_dct()
, ft_elementwise_product()
, ft_feature_hasher()
, ft_hashing_tf()
, ft_idf()
, ft_imputer()
, ft_index_to_string()
, ft_interaction()
, ft_max_abs_scaler()
, ft_min_max_scaler()
, ft_ngram()
, ft_normalizer()
, ft_one_hot_encoder_estimator()
, ft_one_hot_encoder()
, ft_pca()
, ft_polynomial_expansion()
, ft_quantile_discretizer()
, ft_r_formula()
, ft_regex_tokenizer()
, ft_robust_scaler()
, ft_sql_transformer()
, ft_standard_scaler()
, ft_stop_words_remover()
, ft_string_indexer()
, ft_tokenizer()
, ft_vector_assembler()
, ft_vector_indexer()
, ft_vector_slicer()
, ft_word2vec()