ft_chisq_selector
Feature Transformation – ChiSqSelector (Estimator)
Description
Chi-Squared feature selection, which selects categorical features to use for predicting a categorical label
Usage
ft_chisq_selector(
x,
features_col = "features",
output_col = NULL,
label_col = "label",
selector_type = "numTopFeatures",
fdr = 0.05,
fpr = 0.05,
fwe = 0.05,
num_top_features = 50,
percentile = 0.1,
uid = random_string("chisq_selector_"),
...
)
Arguments
Argument | Description |
---|---|
x | A spark_connection , ml_pipeline , or a tbl_spark . |
features_col | Features column name, as a length-one character vector. The column should be single vector column of numeric values. Usually this column is output by ft_r_formula . |
output_col | The name of the output column. |
label_col | Label column name. The column should be a numeric column. Usually this column is output by ft_r_formula . |
selector_type | (Spark 2.1.0+) The selector type of the ChisqSelector. Supported options: “numTopFeatures” (default), “percentile”, “fpr”, “fdr”, “fwe”. |
fdr | (Spark 2.2.0+) The upper bound of the expected false discovery rate. Only applicable when selector_type = “fdr”. Default value is 0.05. |
fpr | (Spark 2.1.0+) The highest p-value for features to be kept. Only applicable when selector_type= “fpr”. Default value is 0.05. |
fwe | (Spark 2.2.0+) The upper bound of the expected family-wise error rate. Only applicable when selector_type = “fwe”. Default value is 0.05. |
num_top_features | Number of features that selector will select, ordered by ascending p-value. If the number of features is less than num_top_features , then this will select all features. Only applicable when selector_type = “numTopFeatures”. The default value of num_top_features is 50. |
percentile | (Spark 2.1.0+) Percentile of features that selector will select, ordered by statistics value descending. Only applicable when selector_type = “percentile”. Default value is 0.1. |
uid | A character string used to uniquely identify the feature transformer. |
… | Optional arguments; currently unused. |
Details
In the case where x
is a tbl_spark
, the estimator fits against x
to obtain a transformer, which is then immediately used to transform x
, returning a tbl_spark
.
Value
The object returned depends on the class of x
.
spark_connection
: Whenx
is aspark_connection
, the function returns aml_transformer
, aml_estimator
, or one of their subclasses. The object contains a pointer to a SparkTransformer
orEstimator
object and can be used to composePipeline
objects.ml_pipeline
: Whenx
is aml_pipeline
, the function returns aml_pipeline
with the transformer or estimator appended to the pipeline.tbl_spark
: Whenx
is atbl_spark
, a transformer is constructed then immediately applied to the inputtbl_spark
, returning atbl_spark
See Also
See https://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark.
Other feature transformers: ft_binarizer()
, ft_bucketizer()
, ft_count_vectorizer()
, ft_dct()
, ft_elementwise_product()
, ft_feature_hasher()
, ft_hashing_tf()
, ft_idf()
, ft_imputer()
, ft_index_to_string()
, ft_interaction()
, ft_lsh
, ft_max_abs_scaler()
, ft_min_max_scaler()
, ft_ngram()
, ft_normalizer()
, ft_one_hot_encoder_estimator()
, ft_one_hot_encoder()
, ft_pca()
, ft_polynomial_expansion()
, ft_quantile_discretizer()
, ft_r_formula()
, ft_regex_tokenizer()
, ft_robust_scaler()
, ft_sql_transformer()
, ft_standard_scaler()
, ft_stop_words_remover()
, ft_string_indexer()
, ft_tokenizer()
, ft_vector_assembler()
, ft_vector_indexer()
, ft_vector_slicer()
, ft_word2vec()