ft_bucketizer
Feature Transformation – Bucketizer (Transformer)
Description
Similar to ’s cut function, this transforms a numeric column into a discretized column, with breaks specified through the splits parameter.
Usage
ft_bucketizer(
x,
input_col = NULL,
output_col = NULL,
splits = NULL,
input_cols = NULL,
output_cols = NULL,
splits_array = NULL,
handle_invalid = "error",
uid = random_string("bucketizer_"),
...
)Arguments
| Argument | Description |
|---|---|
| x | A spark_connection, ml_pipeline, or a tbl_spark. |
| input_col | The name of the input column. |
| output_col | The name of the output column. |
| splits | A numeric vector of cutpoints, indicating the bucket boundaries. |
| input_cols | Names of input columns. |
| output_cols | Names of output columns. |
| splits_array | Parameter for specifying multiple splits parameters. Each |
element in this array can be used to map continuous features into buckets. handle_invalid | (Spark 2.1.0+) Param for how to handle invalid entries. Options are ‘skip’ (filter out rows with invalid values), ‘error’ (throw an error), or ‘keep’ (keep invalid values in a special additional bucket). Default: “error” uid | A character string used to uniquely identify the feature transformer. … | Optional arguments; currently unused.
Value
The object returned depends on the class of x.
spark_connection: Whenxis aspark_connection, the function returns aml_transformer, aml_estimator, or one of their subclasses. The object contains a pointer to a SparkTransformerorEstimatorobject and can be used to composePipelineobjects.ml_pipeline: Whenxis aml_pipeline, the function returns aml_pipelinewith the transformer or estimator appended to the pipeline.tbl_spark: Whenxis atbl_spark, a transformer is constructed then immediately applied to the inputtbl_spark, returning atbl_spark
Examples
library(dplyr)
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
iris_tbl %>%
ft_bucketizer(
input_col = "Sepal_Length",
output_col = "Sepal_Length_bucket",
splits = c(0, 4.5, 5, 8)
) %>%
select(Sepal_Length, Sepal_Length_bucket, Species)See Also
See https://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark.
Other feature transformers: ft_binarizer(), ft_chisq_selector(), ft_count_vectorizer(), ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(), ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(), ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(), ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(), ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(), ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()